
1

2

TABLE OF CONTENTS

EXECUTIVE SUMMARY..4

REVIEWS...4

SECURITY FINDINGS... 4

H01. FUNDS LOCK.. 5

M01. LACK OF DEPLOY FEES DEDUCTION IN PURCHASE CALCULATION...5

L01. CREATION OF EMPTY COLLATERALIZED DEBT POSITIONS..6

DETAILED SCOPE... 6

APPROACH AND METHODOLOGY.. 7

LIMITATIONS AND USE OF REPORT..8

3

EXECUTIVE SUMMARY

Type Tokens Languages FunC

Methods Architecture Review, Manual Review, Unit Testing, Functional Testing, Automated Review

Documentation https://github.com/TheAnomalyXYZ/ton-hoverpets/blob/audit/review_01/README.md

Repository Detailed scope can be found at the end of the document

REVIEWS

Review Date Commit

#1 13/09/2024

#2 01/10/2024 9172a151

SECURITY FINDINGS

Critical

No critical severity issues were found.

4

High

H01. FUNDS LOCK

Description: The withdraw_all function initially reserved 0.01 TON for fees, which proved insufficient for
reliable execution of the withdrawal transaction. Because the send mode is set to 2, the transaction does
not revert if the fee is insufficient, and results in the successful execution of the transaction without really
transferring the funds to the owner's address.

Recommendation: The reserved amount for fees needs to be increase, ensuring sufficient funds are
available for transaction execution.

int withdraw_amount = my_balance - 2000000; // Leave 0.02 TON for fees

Medium

M01. LACK OF DEPLOY FEES DEDUCTION IN PURCHASE CALCULATION

Severity
Medium Impact Medium Likelihood High

Type Financial Commit 9172a151 Status Fixed

Target hoverpet_store.fc: fn process_payment()

Description: The current implementation of the process_payment() function does not account for the
deploy fees when calculating the number of items purchased. This oversight can lead to an incorrect
calculation of items_purchased, potentially allowing users to receive more items than they should for the
amount paid.

Recommendation: Modify the process_payment() function to account for deploy fees in the calculation:

5

Severity High Impact High Likelihood High

Type Financial Commit 9172a151 Status Fixed

Target hoverpet_store.fc: fn op::withdraw_all

int deploy_fee = [calculate_deploy_fee_here];

int effective_payment = msg_value - deploy_fee;

int items_purchased = effective_payment / price;

Low

L01. CREATION OF EMPTY COLLATERALIZED DEBT POSITIONS

Severity
Low Impact Low Likelihood High

Type Financial Commit 9172a151 Status Fixed

Target hoverpet_store.fc: fn process_payment()

Description: The current implementation of the process_payment() function does not handle change when
the sent value is not exactly divisible by the item price. This could result in users losing small amounts of
TON on each purchase.

Impact: While the impact per transaction is small, over time and with multiple users, this could lead to
accumulated TON trapped in the contract, effectively lost to the users.

Recommendation: Implement a change return mechanism in the process_payment() function:

int items_purchased = msg_value / price; ;;also notice the issue with the deduction of fees.

int change = msg_value % price;

if (change > 0 {

// Implement logic to return change to the sender

}

DETAILED SCOPE

Last revision - Commit 9172a15146c7b9b2a999e197d6cca499cc86a095

6

Full path LOCs

hoverpet_payment_tracker.fc 54

hoverpet_store.fc 143

APPROACH AND METHODOLOGY

To establish a uniform evaluation, we define the following terminology in accordance with the OWASP Risk Rating
Methodology:

Likelihood

indicates the probability of a specific vulnerability being discovered and exploited in real-world
scenarios

Impact

measures the technical loss and business repercussions resulting from a successful attack

Severity

reflects the comprehensive magnitude of the risk, combining both the probability of occurrence
(likelihood) and the extent of potential consequences (impact)

Likelihood and impact are divided into three levels: High H, Medium M, and Low L. The severity of a risk is a
blend of these two factors, leading to its classification into one of four tiers: Critical, High, Medium, or Low.

When we identify an issue, our approach may include deploying contracts on our private testnet for validation
through testing. Where necessary, we might also create a Proof of Concept PoC to demonstrate potential
exploitability.

In particular, we perform the audit according to the following procedure:

7

Security Analysis

The process begins with a comprehensive examination of the system to gain a deep
understanding of its internal mechanisms, identifying any irregularities and potential weak spots.

Semantic Consistency Checks

We then manually check the logic of implemented smart contracts and compare with the
description in the white paper.

Advanced DeFi Scrutiny

We further review business logics, examine system operations, and place DeFi-related aspects
under scrutiny to uncover possible pitfalls and/or bugs.

Additional Recommendations: We also provide additional suggestions regarding the coding and development of
smart contracts from the perspective of proven programming practices.

To effectively classify each detected issue, we utilize the Common Weakness Enumeration CWE699, a
community-curated catalogue of software weakness types. This helps in precisely defining and organizing software
development weaknesses. While some CWE699 categories may not directly apply to smart contracts, we adapt
them in our classification process. Furthermore, for issues impacting active protocols, the public report version may
temporarily exclude specific details, which will be fully disclosed once the protocol is updated with the necessary
fixes.

LIMITATIONS AND USE OF REPORT

Security evaluations can't identify all vulnerabilities; a vulnerability-free assessment doesn't equate to a fully secure
system. Nonetheless, code reviews are crucial for uncovering overlooked vulnerabilities and pinpointing areas
needing enhanced security. Typically, applications are either entirely secure against a specific attack or wholly
vulnerable. Some vulnerabilities may impact the whole application, whereas others only affect specific sections.
Therefore, we conduct a thorough source code review to identify all areas requiring attention. Within the timeframe
set by the client, Chain Security strives to detect as many vulnerabilities as possible.

Our analysis was confined to the code sections specified in the engagement letter. We examined if the project
adhered to the given specifications, guided by the outlined threat model and trust assumptions. It's important to note
that due to the inherent limitations of any software development process and product, there is always a risk of
significant undetected errors or malfunctions. Additionally, uncertainties arise from any software or application used
in development, as they too can harbor errors or failures. These factors can influence the system's code, functions,
or operation. Our assessment did not cover the underlying third-party infrastructure, introducing additional inherent
risks depending on the accurate functioning of the third-party technology stack. Readers of this report should also
consider that software changes over its life cycle, as well as changes in its operating environment, can lead to
operational behaviors that deviate from the original business specifications.

8

Check out our collection of articles exploring in-depth security options for your project!
TriWei.io/education

9

http://www.triwei.io/education

